Skip to main content

A multi-scale approach to microstructure-sensitive thermal fatigue in solder joints

01 August 2022

New Image

This paper presents a multi-scale modelling approach to investigate the underpinning mechanisms of microstructure-sensitive damage of single crystal Sn-3Ag-0.5Cu (wt%, SAC305) solder joints of a Ball Grid Array (BGA) board assembly subject to thermal cycling. The multi-scale scheme couples board-scale modelling at the continuum macro-scale and individual solder modelling at the crystal micro-scale. Systematic studies of tin crystal orientation and its role in fatigue damage have been compared to experimental observations. Crystallographic orientation is examined with respect to damage development, providing evidence-based optimal solder microstructural design for in-service thermomechanical fatigue.