Skip to main content

Analysis of DFT-based channel estimators for OFDM

01 January 2000

New Image

In this paper we analyze the performance of three low-complexity channel estimators, based on the discrete Fourier transform (DFT), for orthogonal frequency-division multiplexing (OFDM) systems. Estimators of this type have been analyzed for discrete-time channels, and we extend this analysis to continuous-time channels. We present analytical expressions for their mean-squared error (MSE) and evaluate their complexity vs. symbol-error rate (SER) for 16-QAM. The analysis shows that this type of estimators may experience an irreducible error floor at high SNRs. However, in one of the three estimators the error floor can be eliminated while the complexity stays low and the performance is maximized.