Skip to main content

Boron-Enhanced Diffusion of Boron: Physical Mechanisms

19 April 1999

New Image

Silicon layers containing B in excess of a few atomic percent create a supersaturation of Si self-interstitials in the underlying Si, resulting in enhanced diffusion of B in the substrate (boron-enhanced diffusion, BED). The temperature- and time-dependence of BED is investigated here. Evaporated-boron as well as ultra-low energy 0.5-keV B-implanted layers were annealed at temperatures from 1100 to 800C for times ranging from 3 to 3000s. Isochronal 10s anneals reveal that the BED effect increases with increasing temperature up to 1050C and then decreases. In contrast, simulations based on interstitial generation via the kick-out mechanism predict a decreasing dependence leading to the conclusion that the kick-out mechanism is not the dominant source of excess interstitials responsible for BED.