Skip to main content

Characteristic of BroadBand ULF Magnetic Pulsations at Conjugate Cusp Latitude Stations

01 January 1999

New Image

Although cusp latitude pulsation studies have for the most part focused on narrowband waves, analysis of magnetometer data from the Arctic has shown that the most common type of dayside long-period ULF wave activity at very high latitudes is broadband noise (Pi 1-2), and that its occurrence and intensity is largely controlled by solar wind velocity. However, the origin of temporal variations in the intensity of these waves is not understood. In order to further investigate these broadband waves and their origins, we present a similar data set from another season, data from a roughly conjugate site, and multi-instrument data. Comparison of conjugate station data revealed that there was a substantial fraction of days during which there were significant temporal disagreement between hemispheres, but the solar wind velocity still appears to control overall daily intensity in broadband power. The coincidence of increased riometer absorption from conjugate locations with strong broadband ULF wave power suggests that precipitating energetic particles are responsible for much of the broadband ULF noise, and further suggests that high solar wind velocity plays a role in precipitation of significant fluxes of energetic particles. Quantitative estimates based on riometer and photometer observations also indicate that modulated electron precipitation is sufficient to drive the broadband pulsations. We review possible source mechanisms for these broadband waves and the precipitating electrons associated with them. Finally, the clear temporal association between these waves and Pc5 waves on closed field lines may suggest a causal connection via modulation of a three-dimensional current system.