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ABSTRACT

Abdominal sounds (ABS) have been traditionally used for as-
sessing gastrointestinal (GI) disorders. However, the assessment re-
quires a trained medical professional to perform multiple abdominal
auscultation sessions, which is resource-intense and may fail to pro-
vide an accurate picture of patients’ continuous GI wellbeing. This
has generated a technological interest in developing wearables for
continuous capture of ABS, which enables a fuller picture of pa-
tient’s GI status to be obtained at reduced cost. This paper seeks to
evaluate the feasibility of extracting heart rate (HR) from such ABS
monitoring devices. The collection of HR directly from these de-
vices would enable gathering vital signs alongside GI data without
the need for additional wearable devices, providing further cost ben-
efits and improving general usability. We utilised a dataset contain-
ing 104 hours of ABS audio, collected from the abdomen using an
e-stethoscope, and electrocardiogram as ground truth. Our evalua-
tion shows for the first time that we can successfully extract HR from
audio collected from a wearable on the abdomen. As heart sounds
collected from the abdomen suffer from significant noise from GI
and respiratory tracts, we leverage wavelet denoising for improved
heart beat detection. The mean absolute error of the algorithm for av-
erage HR is 3.4 BPM with mean directional error of -1.2 BPM over
the whole dataset. A comparison to photoplethysmography-based
wearable HR sensors shows that our approach exhibits comparable
accuracy to consumer wrist-worn wearables for average and instan-
taneous heart rate.

Index Terms— Abdominal Sounds, Heart Rate, Signal Process-
ing, Wavelet denoising

1. INTRODUCTION

Abdominal sounds (ABS) have traditionally been used by medical
professionals to monitor gastrointestinal (GI) activity [1]. In recent
years, ABS collected with an e-stethoscope in a clinical setting with
applied digital signal processing techniques have been used to un-
cover features specific to certain GI disorders [2]. Modern methods
such as machine learning classifiers have also been deployed on ABS
data to diagnose GI disorders [3]. However, abdominal auscultation
has to be performed by specially trained doctors, and can only be
done at discrete intervals for a relatively short time duration due to its
resource-intensity. To enable continuous monitoring of ABS, inter-
est in abdominal wearable devices has soared [4, 5]. These wearable
devices collect sounds audible from the abdomen, with the primary
goal of capturing GI sounds. Examples include early meal onset de-
tection [6] and user’s stress level detection [7]. However, because of
the close proximity of the abdomen to the thoracic cavity, heart and
respiratory sounds are inadvertently captured, too.

Fig. 1: Example of (a) clean and (b) noisy audio recorded from the
abdomen. The audio data is annotated with ECG R peaks as well as
the peak to peak interval used to calculate heart rate.

Heart sounds are clinically extremely valuable as they can be
used to diagnose heart-based pathologies, as well as for determin-
ing heart rate and related vital signs. Heart activity is measured in
the clinical setting using phonocardiogram (PCG), where sound is
captured, or using electrocardiogram (ECG), which captures heart’s
electrical activity. In wearables, the most prevalent sensing modality
for continuous heart rate (HR) monitoring is photoplethysmography
(PPG), which uses the changes in light reflectance due to expansion
and contraction of the blood vessels [8]. Two key vital signs that are
typically used for heart activity evaluation are average and instanta-
neous heart rate. HR is an early indicator of cardiovascular disease
(CVD), which is the leading cause of death globally with an esti-
mated 17 million deaths from CVDs per year [9]. Abnormalities in
average HR are linked to mortality [10], while instant HR has been
shown to have applications in seizure monitoring [11]. In addition,
instant HR can be used to calculate heart rate variability (HRV), a
metric associated with mortality [12].

This work explores the feasibility of vital signs extraction from
audio collected using a wearable device, leveraging PCG by using
heart sounds that travel through the thorax to the abdomen. Unlike
in traditional chest-based PCG where clean heart sounds are easier to
obtain, extracting vital signs from ABS brings multiple challenges.
Firstly, the position of the microphone on the lower abdomen en-
sures high quality GI sounds, but the signal to noise ratio (SNR) of
heart sounds suffers significantly. Secondly, heart sounds collected
at the abdomen are obfuscated by abdominal and breathing sounds
with high SNR, making heart sound analysis challenging. Thirdly,
sounds created by movement of the user are captured with the micro-
phone adding additional complexity to the signal. Figure 1 shows an
example of audio recorded at the abdomen where heart sounds are
clear and where the heart sounds are obscured by noise.

This paper presents, for the first time, a feasibility study into de-
termining vital signs from ABS, a key step in achieving a minimally-
obtrusive, suitable for daily wear abdominal health wearable. We



study the potential of extracting average heart rate (aHR) and instan-
taneous heart rate (iHR) from ABS captured using a custom-built
e-stethoscope embedded in a wearable belt. Audio collected using
a microphone on the lower abdomen goes through several stages of
signal processing including lowpass filtering, wavelet denoising, and
peak detection to estimate average and instantaneous HR, as well as
post-processing for outliers. We compared our results to those ob-
tained using a ground truth ECG chest strap. The approach demon-
strates mean absolute percentage errors of 4.8% for average HR and
8.9% for instantaneous heart rate from the abdominal audio.

2. METHODOLOGY

2.1. Dataset

The dataset [7] used for this work consists of audio collected from
the abdomen with a custom-built e-stethoscope embedded in a
stretchable belt, as well ECG ground truth data captured with a
Polar H9 chest strap. The data collection was approved by the ethics
committee of the Department of Computer Science and Technology
at the University of Cambridge. The participants in this study were
seated at rest, therefore their heart rate can be expected to be in the
standard 50-90 BPM range [13]. Overall, 104 hours of audio and
ECG data was collected from 7 participants across 10 days. The data
were collected remotely during the pandemic, leading to variability
in adherence to the data collection instructions across participants.
To account for this, a data quality check was performed to remove
fragmented or excessively noisy audio or ECG samples.

2.2. Algorithm Overview

Vital sign extraction from sounds captured on the abdomen is non-
trivial. The SNR of the heart sounds is very poor due to the position-
ing of the e-stethoscope on the abdomen and due to the interference
of other sounds in the same frequency range, such as the sounds
from GI and respiratory tracts. This section presents our solution
to overcoming these challenges and performing, for the first time,
extraction of vital signs from audio collected on the abdomen.
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Fig. 2: Block diagram of the algorithm developed for vital sign ex-
traction from audio recorded at the abdomen.

The general structure of our designed algorithm for vital sign
extraction from audio recorded at the abdomen is shown in Figure 2.
The following subsections describe each block in detail.

2.2.1. Pre-processing

We first apply an anti-aliasing low-pass filter with 2 kHz cutoff and
then downsample the signal to 4 kHz. Secondly, we split the data

into 10 s windows, each with a 2 s overlap with the previous and the
following window. A 10 s window is used in the literature [14] and
should contain roughly 10 heart sounds, which we deemed sufficient
for averaging (for aHR extraction), while still being short enough to
capture short-term temporal changes in heart data. We then apply z-
score normalisation to the data. This allows us to identify outliers in
the audio, which predominantly occur because of motion artefacts.
After z-score normalisation, if the window contains samples lying
more than 10 standard deviations from the mean, we discard the win-
dow. By doing this, we retain only windows that are free from severe
motion artefacts to improve robustness of HR estimation.

2.2.2. Signal Denoising

After pre-processing, windows with severe motion artefacts are re-
moved. However, some environmental noise, as well as undesired
sounds from GI and respiratory tracts are still present within the sig-
nal. To reduce the impact of this noise, we apply denoising to the
retained windows.

Specifically, we use a 5th order Butterworth lowpass filter with
a 200 Hz cutoff frequency. This filter attenuates high-frequency in-
formation that is related to external noise, and retains information
related to internal body sounds. Since internal body sounds lie in
a similar frequency range, band-pass filtering tends to be ineffec-
tive for separating heart sounds from noise coming from GI and
respiratory tracts. To isolate the heart sounds, we apply a wavelet-
based filtering technique. We apply the discrete wavelet transform
(DWT) to each window and modify the coefficients with soft thresh-
olding [15]. We then perform the inverse DWT to obtain the cleaned
heart sounds. We use the Coiflet 4 wavelet with the 5th decompo-
sition level as these were empirically determined to have the best
performance. When applying the threshold, we use the sqtwolog
method with soft thresholding [15]. This method allows us to isolate
and remove coefficients with high variance from the mother wavelet
which has a low variance from the heart sounds. This is detailed in
Equation (1), where σj is the mean absolute deviation of the wavelet
coefficients, Nj is the length of the signal, and j is the decomposi-
tion level.

thj = σj

√
2log(Nj) (1)

2.2.3. Heart Rate Estimation

After pre-processing and denoising, we extract vital signs from the
cleaned audio signals. In the denoised signal, peaks correspond to
heart beats (as shown in Figure 1). We thus detect peaks directly
from the cleaned signal, and calculate the timings between consec-
utive peaks. We use a minimum distance between peaks of 0.65 s
and minimum peak height of 1.2. The peak distance is chosen to
allow for a resting heart rate of 92 BPM, which is over the maximum
HR typical for a resting state, as stated by [13], and the height is
empirically determined by examining the amplitudes of the cleaned
data.

The instantaneous HR (iHR) is calculated using the time differ-
ence between two consecutive peaks, the P-P time (Equation (2)).
We perform a final check on the predicted heart beats to ensure they
lie within a reasonable heart rate range. If detected heart sounds
are too far apart, then this P-P interval is discarded and the next in-
terval is used, the threshold for this rejection is a heart rate under
45 BPM. (i.e. outside the human resting HR range [13]). The aver-
age HR (aHR) is then calculated by averaging the iHR samples over
the window. Due to the overlapping windows, the last 2 seconds of



each window are not included in the aHR calculation to avoid double
counting their contribution.

iHR =
60

P-P time
(2)

The aHR is post-processed to remove outliers and smooth the re-
sults. We use a moving standard deviation window, with a threshold
of two standard deviations, to detect and replace outliers. Finally, we
smooth the signal using a moving average filter across the windowed
results.

3. RESULTS AND DISCUSSION

3.1. Metrics

The metrics used to assess system performance are Mean Directional
Error (MDE) (Equation 3), Mean Absolute Error (MAE) (Equa-
tion 4) and Mean Absolute Percentage Error (MAPE) (Equation 5).
N is the number of samples, HRAudio represents samples generated
from audio data, and HRECG represents samples from the ground
truth ECG data. These metrics were used for evaluation of both aHR
and iHR.

MDE =

∑
HRAudio − HRECG

N
(3)

MAE =

∑
abs(HRAudio − HRECG)

N
(4)

MAPE = 100 ·
∑ abs(HRAudio−HRECG)

HRECG

N
(5)

3.2. Overall Performance

We assessed the feasibility of monitoring heart rate via abdominal
sounds by evaluating our algorithm’s accuracy in estimating aHR
and iHR in participants at rest, as defined in Section 2.2.3. Table 1
shows the MDE and MAE across the entire dataset for iHR and aHR.
The results show very good accuracy for both the iHR and aHR,
with average errors under 10%, the threshold for medical-grade ac-
curacy under resting conditions [16]. Worth noting, errors for iHR
are consistently higher than for aHR, but this is expected since aHR
averages out multiple iHRs within a window.

Table 1: Results of iHR and aHR across the whole dataset

MDE (BPM) MAE (BPM) MAPE (%)

iHR -0.18 6.4 8.9
aHR -1.2 3.4 4.8

Figure 3 provides a modified Bland Altman (BA) plot of HR
estimation for aHR and iHR (left and right respectively). BA plots
indicate the bias between the measured and GT value for each GT
value. BA plots are used clinically to assess the level of agreement
between two measurement methods [17]. The data shown in the fig-
ure is a subset of the full results set, which was randomly sampled
from each participant for ease of visualisation. The BA plots indicate
a low error and small limits of detection for both aHR and iHR. How-
ever, for aHR, a very clear trend exists whereby the system overesti-
mates heart rates under 60 BPM and underestimates heart rates over
85 BPM. While this trend also exists for iHR, it is less pronounced

than for aHR. This is due to the parameters of the peak detection al-
gorithm which enforce a maximum heart rate of 92 BPM. While this
design decision is consistent with literature, it biases the detected
heart rates toward lower values. This effect can also be seen in the
peaks and troughs of Figure 6. When choosing the techniques used
in the system, we favoured lightweight, lower complexity algorithms
that can be implemented on the device over more sophisticated tech-
niques, such as deep learning. However, this brings its own tradeoffs.
The peak detection parameters were selected based on literature of
maximum resting HR. However, this biases predicted HRs towards
a central value in the typical human resting HR range.

Fig. 3: Bland-Altman diagrams for aHR (left) and iHR (right) for
the dataset (randomised subset of data shown for visibility).
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Fig. 4: Error per participant over the dataset.

Figure 4 shows comparisons in MDE and MAE across all the
participants for both aHR and iHR. It is clear that in both cases er-
rors remain very low, however, there is a variation in error across the
participants with aHR MAE ranging from 1.9 BPM to 6.6 BPM and
iHR MAE from 3.8 BPM to 7.6 BPM. In particular, errors for partic-
ipants 1 to 4 are low with MAE under 3 BPM and MDE close to zero.
However, errors for participants 5 to 7 are larger, with MAE reach-
ing 7 BPM. This is partly caused by poor adherence to the study
protocols during data collection as the researchers could not meet
participants in person. This lack of adherence includes not wearing
devices at the correct tension or not remaining at rest through the
recording period. Additionally, other sounds in the signal collected
from the abdomen, such as bowel or respiratory sounds, cause noise
in the data which affects HR estimation accuracy.



Furthermore, upon inspecting the data of the participant with the
largest error (10.2 BPM MAE), we observed that they had a signifi-
cantly lower resting HR than the other participants in the study. This
indicates that a more prominent, higher frequency signal was iden-
tified over the heart sounds in this participant’s data, which gives
rise to greater error. The algorithm described in Section 2.2.3 ex-
cludes data based on a set of rules for when there are large noise
spikes or the time between heart sounds is too long. Over the whole
dataset, 4.5% of data is removed as windows contain large noise
spikes. Using the retained data, HR estimations are done and 6.0%
of estimations are excluded as they exceed the resting HR range, re-
sulting in a total missingness of 10.2% of the data. This is believed
to be acceptable given that it makes detection feasible and prevents
unrealistic heart rates from being reported.

3.3. Longitudinal Tracking

(a) MDE of iHR (b) MAE of iHR

Fig. 5: Variation in iHR MDE and MAE in HR across 10 days for
one participant.

The results for HR trends across the same participant for differ-
ent days is presented in Figure 5. This participant was chosen as their
data had the best SNR across all the participants. The figure shows
that for the same participant, error remains under 7 BPM for each
day of the study. However, while remaining low, error still varies
across days by up to 250%. This could indicate inconsistencies with
wearing the device over each day or variations in the participant’s
resting heart rate.

Fig. 6: Tracking between the ground truth and audio estimated HR
over an hour period.

Figure 6 provides the results of HR predictions over a period of
one hour. In this figure, GT HR is compared with aHR from abdom-
inal audio. It is evident that there is a close agreement between the
two measurements as the participant’s HR changes over time. It can
also be seen that the audio estimate underestimates at the peaks and
overestimates at the troughs, consistent with Figure 3.

Table 2: Comparison between our method and consumer and re-
search grade devices for HR extraction at rest. The other devices
results are taken from Bent et al. [18].

Method MDE (BPM) MAE (BPM)

Apple Watch 4 -0.09 4.4
Fitbit Charge 2 +0.34 7.3
Garmin Vivosmart 3 -0.85 7.0
Empatica E4 -3.9 11.3

ABS Average HR (Ours) -1.2 3.4

3.4. Baseline Comparison

Table 2 provides a baseline comparison of our results to accuracy of
HRs from consumer and research grade devices as reported by Bent
et al. [18]. This study assessed performance while both active and
at rest, however, only the results from the rest condition are used in
the comparison, since devices to monitor GI activity are designed
for use at rest [5]. Thus, our algorithm will be suitable for most
cases of ABS monitoring. It is evident from the table that our system
outperforms all the consumer and research grade devices for MAE
for aHR. Notably, we even outperform the best performing device,
the Apple Watch, in terms of absolute error. Interestingly, although
we have the lowest absolute error, our directional error is higher than
the majority of the devices studied in [18]. This is due to the peak
detection parameters, as previously discussed. It must be noted that
these PPG devices are reporting an average HR and instantaneous
HR cannot be accessed.

4. CONCLUSIONS AND FUTURE WORK

This work presents, for the first time, heart rate extraction (both in-
stantaneous and average) from abdominal sounds. Creating the link
between ABS and vital signs is key for an ABS measuring wearable
as it allows such a wearable to obtain a holistic view of patients’
general health and wellbeing, while simultaneously monitoring GI
status. We extract average and instantaneous HR from 104 hours of
data across 7 participants using lightweight signal processing tech-
niques. Using our system, we achieve a MAE 3.4 BPM with MDE
of -1.2 BPM for average HR, amounting to an average absolute error
of 4.8%. This feasibility study demonstrates the opportunity for in-
tegrating ABS and HR monitoring devices into the same form factor
at the abdomen, such as ordinary belts or elastic bands. Such form
factor might have competitive advantage by being fully integrated
and widely accepted into existing clothing designs.

Our system uses established signal processing techniques for
HR estimation from ABS. However, for future work, segmentation
with machine learning methods such as logistic regression [19], or
LSTMs [20] could be implemented to localise the heart sounds, thus
enabling more accurate and consistent location of the heart sounds,
thus leading to improved instantaneous HR estimations. This could
enable tracking additional vital signs, such as heart rate variability,
respiratory rate, and related metrics from abdominal sounds.
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