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ABSTRACT: Advancing continuous health monitoring beyond
vital signs to biochemistry will revolutionize personalized
medicine. Herein, we report a biosensing platform to achieve
remote biochemical monitoring using microparticle-based
biosensors and optical coherence tomography (OCT). Stim-
uli-responsive, polymeric microparticles were designed to serve
as freely dispersible biorecognition units, wherein binding with
a target biochemical induces volumetric changes of the
microparticle. Analytical approaches to detect these submicron
changes in 3D using OCT were devised by modeling the
microparticle as an optical cavity, enabling estimations far
below the resolution of the OCT system. As a proof of concept, we demonstrated the 3D spatiotemporal monitoring of
glucose-responsive microparticles distributed throughout a tissue mimic in response to dynamically fluctuating levels of
glucose. Deep learning was further implemented using 3D convolutional neural networks to automate the vast processing of
the continuous stream of three-dimensional time series data, resulting in a robust end-to-end pipeline with immense potential
for continuous in vivo biochemical monitoring.
KEYWORDS: biophotonics, bioimaging, optical coherence tomography, biosensing, microparticle, machine learning,
convolutional neural networks

Biological signals emanating from the human body are
important indicators for tracking overall health and
well-being. Developing innovative methods to measure

these diverse signals has played an essential role in pushing the
frontiers of healthcare. Due to advances in wearable
technologies, measuring vital signs (e.g., heart rate, body
temperature, respiration rate, blood pressure) is now common-
place in the comforts of our very homes.1 However, tapping
into the rich in-body biochemistry for continuous and real-
time monitoring has proven to be much more challenging.
Acquiring a continuous readout at the biomolecular level can
provide a much more informed assessment of an individual’s
state of well-being.2 Although continuous glucose monitoring
is well established and commercially available,3 detecting and
monitoring other types of biomarkers in an in vivo transdermal
setting has remained elusive.4 This is partly due to challenges
in developing strategies that can couple the complex binding
activity of a target biomarker with a sensing modality to
spatiotemporally monitor the binding within tissue over time.5

In terms of a robust sensing modality, optical methods have
proven to be promising for continuous physiological
monitoring. Compared to other types of sensors (e.g.,

electrical, acoustic), optical-based biosensors offer several
advantages including high sensitivity, wide dynamic range for
detection, immunity from electromagnetic interference, capa-
bility for multiplexing with different wavelengths of light, and
noncontact means for interrogation.6 Conventional optical
readouts tend to be generated as a colorimetric, fluorescent, or
luminescent response; fluorescence-based methods are most
common for in vivo biosensing.7−10 Although a number of
studies have reported the use of organic dyes to detect
fluorescence modulation in response to biochemical bind-
ing,11−14 there are several limitations for fluorescence-based
biosensing in the context of long-term monitoring, which
include susceptibility to photobleaching, low signal-to-noise
intensity due to tissue autofluorescence, low penetration
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depths for visible light excitation, and a limited chemical
versatility in fluorescent probe design to sense diverse
biochemical targets.15

Unlike these conventional optical-based readouts, optical
coherence tomography (OCT) can offer significant advantages
for continuous in vivo biosensing. By utilizing infrared light,
OCT enables depth-resolved cross-sectional imaging of tissue
in a noncontact and noninvasive manner.16 Moreover, detailed
microscopic structures can be resolved in three dimensions
with a high spatial resolution of ∼5−10 μm.17 OCT also
operates at much faster speeds than other tomography imaging
techniques (like ultrasound) since it is based on light,
providing 3D imaging at a temporal resolution of about one
second. Beyond acquiring structural information, depth-
resolved spectroscopic information can also be extracted
from the OCT signal using short-time Fourier transforms,
further providing invaluable biochemical insight about
endogenous biomolecules native to the tissue or exogenous
agents introduced into the tissue.18,19

Previous studies have attempted to exploit these features of
OCT for biosensing. Since glucose can alter the optical
properties of tissues, OCT has been used to correlate changes
in tissue scattering coefficients to blood glucose concen-
trations.20,21 However, this approach has proven to be
unreliable and inaccurate, since the tissue scattering
coefficients can also vary due to subtle changes in body
temperature and the concentration of other analytes. To

enhance specificity, several studies designed biomolecular
recognition devices to monitor changes in turbidity in response
to changing biochemical concentration.22,23 However, such
approaches faced challenges with implanting large devices (e.g.,
gold mirror surfaces) and precisely positioning the device in
the tissue with respect to the laser beam. Spectroscopic OCT
has also been employed to characterize the optical spectra of
micron-scale particles within a tissue.24,25 However, this
approach only worked to estimate nuclear sizes of static
targets and labels within the native tissue rather than as a
dynamic biosensing modality.
Herein, we report a biosensing approach that combines the

key attributes inherent to OCT for the dynamic monitoring of
biochemical-responsive, tissue-embeddable microparticles
(Figure 1). Polymeric microparticles were engineered to
serve as freely dispersible biomolecular recognition units,
wherein changes in the binding of a biomolecule would induce
volumetric changes of the microparticle. By employing glucose-
responsive microparticle biosensors as a proof of concept, we
demonstrate 3D spatial tracking of the micron-scale biosensors
distributed throughout a hydrogel-based tissue mimic as well
as temporal monitoring of the physical and spectral changes of
the distributed biosensors in response to a dynamically
fluctuating biochemical microenvironment. The physical and
spectral changes in the microparticle size were monitored using
two distinct analytical approaches, which enabled estimations
far below the resolution of the OCT system. In order to

Figure 1. Schematic diagram depicting the end-to-end pipeline for OCT-based automated biochemical monitoring using embeddable,
biochemical-responsive microparticle biosensors.
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overcome the significant user input required to manually locate
the biosensor response, we further developed a deep learning-
based approach to automate the vast processing of the
continuous stream of three-dimensional time series data.
Overall, we demonstrate an end-to-end OCT-based biosensing
pipeline, which has immense potential for realizing continuous
and real-time in vivo monitoring of physiologically relevant
biomarkers.

RESULTS AND DISCUSSION

Designing Hydrogel-Based Spherical Microparticles.
Stimuli-responsive hydrogels are known to alter their physical
and chemical properties upon exposure to an external stimulus
like light, temperature, enzymes, and biochemicals.26 These
responsive biomaterials have been extensively utilized over the
years for numerous applications including tissue engineering,
drug delivery, and biosensing.27 We sought to fabricate
glucose-responsive microparticles by covalently incorporating
a phenylboronic acid derivative into a hydrogel matrix. Boronic
acids have been shown to differentiate structurally similar
saccharide molecules, wherein the phenylboronic acid
derivative has been found to have high affinity for glucose
compared to other saccharides (e.g., fructose, galactose,
mannose).28 Several studies have further shown the capability

of phenylboronic acid-based hydrogel sensors to accurately
detect glucose in the presence of exogenous substances and
endogenous species, indicating their robustness for potential in
vivo applications.29,30 Previous studies have demonstrated
glucose-responsive hydrogels in the form of films and fibers,
wherein the reversible complexation of the cis-diol groups of
glucose molecules with the phenylboronic acid derivative was
shown to increase the fraction of charged boronate species,
which in turn increased the osmotic pressure within the
hydrogel and induced volumetric swelling.31,32 In order to
achieve isotropic swelling and deswelling synchronized to
variations in glucose concentration, we adopted a similar
sensing mechanism to optimize the generation of spherical
hydrogel microparticles (Figure 2a). We incorporated the 3-
(acrylamido)phenylboronic acid (APBA) molecule as the
glucose-responsive element into a copolymer backbone
composed of poly(acrylamide-co-poly(ethylene glycol) diacry-
late), p(AM-co-PEGDA) (Figure S1).
Microparticles were generated using an emulsification

process, wherein droplets containing the monomers (i.e.,
AM, PEGDA, and APBA) in an aqueous medium were
dispersed in an immiscible medium (i.e., oil). Stable emulsion
droplets favor a spherical shape due to the minimized
interfacial energy at the boundary between the two immiscible

Figure 2. Synthesis and characterization of biochemical-responsive hydrogel microparticles. (a) The hydrogel microparticle consists of a
PEG-cross-linked polyacrylamide backbone functionalized with 3-(acrylamido)phenylboronic acid (APBA). The phenylboronic acid
derivative binds the cis-diols of glucose molecules, leading to a reversible binding reaction that modulates the osmotic pressure and results in
volumetric changes in the microparticle size. (b) Plot depicting the net change in microparticle size versus the initial microparticle diameter
for varying doping concentrations of APBA, exposed to 100 mM glucose. (c) Droplet microfluidic setup for microparticle synthesis, achieved
through coflow of the aqueous hydrogel precursor solution and the oil phase followed by UV-based photo-cross-linking. (d) Microscopy
images of microfluidic-generated monodisperse microparticles. Scale bar: 25 μm.
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fluids and the retention of uniform pressure over the entire
interface.33 The emulsion droplets can then be polymerized to
form spherical hydrogel microparticles; in our case, we added a
photoinitiator (2-hydroxy-2-methylpropiophenone) to the
initial precursor monomer solution, rendering the droplets
photo-cross-linkable upon exposure to UV light (365 nm).
Fabrication and Testing of Glucose-Responsive

Microparticles. Emulsions were formed using one of two
distinct synthetic approaches. The first method involved
vortexing, in which the aqueous monomer solution was
deposited in oil and then submitted to bulk shearing forces.
Although the average microparticle size range can be roughly
controlled by adjusting the vortexing speed, the size
distribution is relatively broad (Figure S2). Nevertheless, the
vortexing method proved to be advantageous for investigating
the glucose-sensing properties of different-sized microparticles
for a given chemical composition (Figure 2b). In general,
larger microparticles would tend to have a larger amount of
APBA available for binding, leading to a greater increase in
microparticle size in response to glucose. This is observed in
Figure 2b, in which the net change in the microparticle size
upon exposure to glucose showed a linear relationship with the
initial starting size of the microparticle. However, by tuning the
relative concentration of APBA and AM, varying degrees of
maximal size change can be achieved. As the concentration of
APBA increased from 25 mol % to 35 mol %, there was a
corresponding increase in the net size change at each given
initial starting size (Figure 2b). While increasing the
concentration of APBA can achieve a greater response, it is
counterbalanced by requiring more time to reach equilibrium.
For instance, upon exposure to 100 mM glucose, an expansion
in microparticle size of ∼25% was achieved within 3 min with a
composition of 25 mol % APBA, ∼35% expansion within 5 min
at 30 mol % APBA, and ∼45% expansion within 8 min at 35
mol % APBA (Table S1).
Considering the maximum glucose response and the time

required to reach equilibrium, we found 30 mol % to be the
optimum concentration of APBA and used the composition
67:3:30 of AM:PEGDA:APBA for the subsequent experiments.
Based on a serial dilution test, the relative percentage change in
size of these microparticles was found to be correlated with the
glucose concentration (Figure S3). By referring to the linear

portion of this calibration curve (0−10 mM), the sensitivity of
our system was found to be 2.4%/mM, with a detection limit
of 1.05 mM. Moreover, microparticles of this composition
were found to be extremely stable, maintaining their structural
integrity without collapsing or degrading after long-term
storage in phosphate buffer at 4 °C (>800 days) as well as
incubation in biological culture medium containing serum at
37 °C (Figure S4).
After optimizing the desired chemical composition of the

microparticle, we employed microfluidic flow-focusing as a
second synthetic method to prepare monodisperse emulsions
that yield highly uniform microparticles of a desired size
(Figure 2c). Microfluidic flow-focusing is a popular and
versatile technique,34 in which the desired droplet size can be
achieved by adjusting the dimension of the orifice, as well as
tuning the flow rates of the dispersal and continuous phase
fluids. By designing a microfluidic channel orifice of 10 μm or
less in width and depth, hydrodynamically dispersed droplets
can achieve sizes larger than 20 μm at a fast rate with high
yield. Moreover, because fluidic stability is a key to sustained
microfluidic generation with uniform sizes, this process can be
optimized by using an isolated chamber to minimize sources of
potential flow interruptions such as mechanical interferences
from tubing drag and stage movement. Droplets of the
hydrogel precursor were formed as an assembly line, achieved
through coflow of the aqueous hydrogel precursor phase and
an oil phase containing surfactants (Figure S5). We adjusted
the flow rate (0.25−40 μL/min) to acquire distinct size
populations between 20 and 60 μm. The delivery of UV light
for the photopolymerization of the droplet emulsions was
achieved through a high-power microscope lens array and
built-in UV source. This setup permitted targeted spot-curing
of the droplets during transit through the microfluidic device,
thereby ensuring the desired microparticle shape and size. The
microfluidic emulsification approach allowed for the synthesis
of uniform, monodisperse microparticles (Figure 2d). The
glucose response of microparticles synthesized using this
approach was further confirmed at physiologically relevant
glucose concentrations (Figure S6).

Flow Cell Setup to Mimic the Dynamic in Vivo
Microenvironment. To mimic glucose monitoring within a
biological tissue environment, microparticles were embedded

Figure 3. Spatiotemporal tracking of microparticle biosensors embedded in tissue mimics exposed to constant glucose flow. (a) Microscopy
images of microparticle swelling behavior to varying glucose concentrations. Scale bar: 20 μm. (b) Plot of the net change in microparticle
diameter size over time of microparticles embedded in a tissue mimic exposed to a constant flow of varying glucose concentration (red line).
The microparticle diameter was calculated by manual segmentation from images acquired using optical microscopy. The average
microparticle starting size was about 55 μm (n = 4). (c) OCT images displaying cross-sectional views of indicated microparticle (dotted box)
in three different planes.
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in a tissue mimic composed of agarose. A thin layer of this
microparticle-embedded tissue mimic was deposited in a
polydimethylsiloxane (PDMS)-based flow cell device. The
device was then placed in a fixed position under the scan lens
(Figure S7). The impinging jet of the analyte (i.e., glucose) was
delivered using syringe pumps in a flow parallel to the
embedded microparticle sensors, wherein advection and
diffusion allowed for the transport of glucose throughout the
flow cell. This experimental setup allowed us to monitor the
microparticle response under a continuous flow of fluctuating
levels of glucose. We initially monitored the microparticles
over time using optical microscopy. The microparticles were
observed to undergo swelling when the glucose concentration
increased and shrinkage when the glucose concentration
decreased (Figure 3a). In this case, the microparticle size
was calculated at each time point using manual segmentation
and estimation of the microparticle diameter in 2D images.
The subtle variations over time in microparticle size were
detectable on a continuous basis within the normal
physiological range of glucose (4−6 mM) as well as levels
indicative of hyperglycemia (>10 mM)35 (Figure 3b). The
robustness in reversibility of these microparticle biosensors was
further confirmed by repeated cycling between normal and
high concentration of glucose (Figure S8). In this way, the
microparticles serve as an adequate proof-of-concept bio-
sensor, which can be freely distributed within a 3D tissue-like
matrix. However, optical microscopy is limited to 2D imaging
of thin surfaces and optically transparent mediums. It offers
poor penetration through thick scattering mediums (e.g., skin),
which would limit the translation of this approach for
continuous biomonitoring.
Design and Implementation of OCT for Spatiotem-

poral Biosensing. In contrast to optical microscopy, swept-
source OCT (SS-OCT) is a well-established method for
volumetric imaging in highly scattering mediums, with
penetration depths greater than 1 mm readily achievable in
skin (see Supporting Note 1). The method is based on low-
coherence interferometry, in which a laser light beam from a
tunable frequency swept laser source is directed to a sample
and the backscattered light is compared to a reference beam to
acquire a single depth scan (Figure S9). Single depth scans
(i.e., A-scans) can be acquired at rates exceeding 100 kHz,

allowing for volumetric imaging of roughly 3 mm × 3 mm × 3
mm volumes per second with 10 μm resolution in all
dimensions. Recent work to miniaturize these systems36,37

offers the potential of a portable, low-cost device for
continuous in vivo monitoring, making SS-OCT an ideal
candidate to acquire a noninvasive readout of microparticle
biosensors.
OCT images of the flow cell were acquired over a lateral area

of 1 mm × 1 mm using a custom fiber-based SS-OCT system
incorporating a commercial swept-source laser centered at
1300 nm. Microparticles displayed sufficient contrast to be
identified in the acquired OCT images and can be easily
visualized in any spatial plane of interest (Figure 3c). The axial
resolution of our system was measured as 7 μm (5.3 μm in
water), consistent with an optical bandwidth of 130 nm.
Since size changes of the microparticles in physiologically

relevant concentrations of glucose were less than 10 μm, which
is less than the resolution of the OCT system, we developed
two approaches to measure subresolution changes in micro-
particle diameter (see Supporting Note 2 for more details on
both methods). The first method utilized Lorentzian peak
fitting (Figure S10). Once each microparticle was identified,
the A-scan with the strongest amplitude was selected. Since the
microparticles were much larger than the OCT axial resolution,
the top and bottom of the microparticle are clearly
distinguishable in the A-scan. Each peak was fit to a Lorentzian
line shape, from which the location of the peak position was
calculated. The diameter of the microparticle is then just the
difference in calculated peak position between the top and
bottom surface of the microparticle.
The second method utilized spectroscopic fitting, which

involved extracting the backscattered spectrum from raw OCT
data using short-time Fourier transforms. The optical spectrum
backscattered from a microparticle depends on the particle
size, shape, and refractive index. Since the shape and refractive
index of the microparticles are known a priori, the size can be
determined by comparing the experimentally measured
backscatter spectrum to theory. To do this, we modeled the
spherical microparticle as a Fabry−Perot optical cavity,
wherein the incident laser light is confined to reflect between
the top and bottom surface of the microparticle (Figure S11).
The theoretical spectra calculated from the Fabry−Perot

Figure 4. Monitoring microparticle biosensor response using spectroscopic OCT. (a) Biochemical target binding induces a physical change
in the microparticle, resulting in a measurable optical change. (b) Overlay of experimentally acquired spectra (blue) and the predicted
spectra (red) by autocorrelation with a Fabry−Perot optical cavity model of two different sized microparticles embedded in a tissue mimic.
(c) Plot depicting the calculated size of the glucose-responsive microparticles using spectroscopic fitting (blue circles) and peak fitting (red
squares), in response to varied glucose concentrations (red line) over time under constant flow conditions.
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model were then autocorrelated to the experimentally acquired
spectrum to infer the microparticle size (Figures S12 and S13).
This method enabled small changes in microparticle diameter
caused by glucose binding to be accurately inferred by
monitoring its spectral backscatter (Figure 4a). This method
was benchmarked both on commercially available polystyrene
microparticles of known standardized sizes (see Supporting
Note 3 and Figure S14) and on multiple different sizes of
glucose-responsive microparticles (Figure 4b and Figure S15),
with an accuracy of 1.2 μm.
The flow cell setup described earlier was then used to

monitor the microparticle response to glucose under
continuous flow conditions using OCT. An initial concen-
tration of 0 mM glucose was applied for 10 min, followed by a
step increase to 10 mM for 60 min, a step decrease to 4 mM
for 30 min, and then finally a step increase to 6 mM for the
final 15 min. A region of interest (ROI) containing a single
microparticle sensor was hand-segmented from the 4D OCT
data and analyzed using the peak fitting and spectroscopic
method to determine its size at every time point. The two
methods yielded nearly identical size estimates, as shown in
Figure 4c. With the step change in flow from 0 mM to 10 mM,
the 55 μm microparticle took approximately 42 min to reach
90% of its final diameter. The microparticle then shrank in size
when the flow was decreased to 4 mM and again increased in
size upon the final step increase to 6 mM. The estimated sizes
closely follow the variations in glucose concentration within
the flow cell, demonstrating reversible swelling and deswelling
of the particle to easily distinguish physiologically relevant
concentrations for normal and hyperglycemic levels. Faster
response times can be achieved as well, by decreasing the size
of the microparticle, wherein a 3-fold decrease in size was seen
to result in a 1.5-fold faster response time (Figure S16).

A comprehensive investigation of the microparticle optical
properties under different glucose concentrations was also
conducted (see Supporting Note 4). By examining the opacity
(Figure S17) and refractive index of the microparticles (Figure
S18), it is clear that the glucose-related size change of the
microparticle results in negligible changes in the optical
properties of the microparticle. As an early proof of concept,
these are exceptional outcomes, which highlight the potential
of our methodology to wirelessly track physiochemical changes
of 3D-embeddable micron-scale sensors in response to
biochemical fluctuations.

Deep Learning for Automated Tracking of Micro-
particle Biosensors. The methodology described so far
requires significant human input in order to identify ROIs
containing a microparticle within the 3D OCT time series data,
which is a tedious and time-consuming process. The lack of
automation in this step is one key barrier for ultimately
achieving real-time, continuous biochemical monitoring using
our approach. We addressed this shortcoming by implement-
ing a deep learning approach based on convolutional neural
networks (CNNs). The application of CNNs on large image
data sets38 for object recognition is one of the most important
breakthroughs for artificial intelligence research in the past
decade.39 The CNN and its many variants have become
especially useful for medical image analysis.40,41 In particular,
they have been extensively applied to analyzing magnetic
resonance imaging (MRI) and computerized tomography
(CT) images, with the goal of either classifying the
presence/absence of disease state or segmenting specific
areas of interest (e.g., tumors, organs).42 Although there are
a few recent reports for employing CNNs on OCT images, the
focus has been primarily in optometry for classifying retinal
disease and segmenting tissue regions in the eye.43,44

Figure 5. Automated microparticle tracking using deep learning. (a) 3D convolutional neural network architecture for microparticle
classification, consisting of four convolutional layers followed by two fully connected linear layers. (b) Plot depicting the microparticle
classification accuracy (presence/absence) across the different data sets. (c) Cross-sectional OCT image displaying microparticles that were
successfully identified (white and orange) and missed (red) during classification. Microparticles indicated in orange displayed large
fluctuations in size estimates that were physically improbable and were thus excluded from further monitoring. (d) Multiparticle monitoring
of changes in microparticle size in response to varying glucose concentrations (red line) over time under constant flow conditions.
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Moreover, there is limited work on applying CNNs to track
microparticles,45,46 especially in 3D volumetric data like those
generated by OCT.
To completely automate our end-to-end pipeline for OCT-

based biochemical monitoring, we designed a microparticle
detection algorithm based on a 3D CNN architecture (Figure
5a). The architecture follows the typical design used in
computer vision.38,39,47 We utilized convolutional layers with
small filters of size 3 × 3 × 3 voxels, followed by rectified linear
units (ReLU) and maxpooling layers of stride 2 to reduce the
input dimensions (Figure S19). Since 3D CNNs have more
parameters than the typical 2D CNNs used in image
classification, we intentionally kept the filters small to reduce
the number of parameters and prevent overfitting. We repeated
this construct four times, followed by two linear layers (with
ReLU activation in between) to reduce the output dimension
to two with softmax activation for classification. The total
number of trainable parameters in the CNN is 13 346. OCT
images tend to be lower in resolution compared to microscope
images commonly used in previous works for particle tracking
using CNNs. In turn, our network architecture contains
relatively fewer parameters compared to CNNs trained on
high-resolution microscope images and videos. More details
about the network architecture and the training are provided in
the Methods section.
The 3D CNN was first trained to classify whether an input

volume contains a microparticle or not. For this, the raw OCT
volumetric image (1 mm × 1 mm × 4 mm) was divided into
subvolumes of 100 μm × 100 μm × 594 μm (10 × 150 × 91
voxels), whereby each subvolume served as a distinct input
into the network. The z-dimension of the subvolume input was
selected to contain the full depth range in which the
microparticles were known to be confined (within the flow
cell described earlier). Moreover, a given subvolume was
assumed to have at most one microparticle, which is a
reasonable assumption considering the predefined experimen-
tal conditions (i.e., known size range of the microparticle batch
and the dilution used to achieve sparse spatial distribution
within the tissue mimic).
The training and testing data were acquired from three

different sets of continuous glucose flow cell experiments (data
set 1, data set 2, and data set 3). The volumetric scans in each
experiment contained at least eight glucose-responsive micro-
particles and were captured every 2 to 5 min over a span of
about 3 to 4 h. We also included volumetric scans of samples
containing microparticles with added background scatter (750
nm polystyrene beads) as training data to improve the
robustness of the 3D CNN toward noise. We manually
located the microparticles and generated positive training
examples by placing random bounding boxes around the
microparticles. These random bounding boxes were created by
shifting a bounding box (10 × 100 pixels) from the
microparticle center by up to three pixels in the y-direction
and up to 40 pixels in the x-direction. This equated to a shift in
about one-third the size of the bounding box in the
corresponding dimensions (z-dimension was kept constant,
as described above). A maximum of three such random
bounding boxes were created for each microparticle. An equal
number of negative training examples were generated by
sampling bounding boxes from the background. Data set 1,
data set 2, and data set 3 contained 1504/1504, 2016/2016,
and 3276/3276 positive/negative examples, respectively. The
noisy OCT scan with added background scatter contained 368

examples. The CNNs were then trained using stochastic
gradient descent.
We performed an independent evaluation of the 3D CNN

classification accuracy for detecting the presence/absence of
microparticles. To assess the classification accuracy, we tested
on three independent data sets (data set 1, data set 2, and data
set 3). When we tested data set 1 (1504 positive and 1504
negative), we trained the 3D CNN using data set 2 and data
set 3, as well as the noisy OCT scan with added background
scatter, and calculated the classification accuracy of the trained
model on data set 1. We accordingly repeated this process for
data sets 2 and 3. In this way, we evaluated how well the 3D
CNN transfers to microparticles in an unseen experiment. The
3D CNN was found to have an accuracy of about 95% in
classifying 3D regions for the presence of a microparticle
(Figure 5b and Figure S20). Moreover, the 3D CNN was
found to consistently and reliably detect microparticles located
at varying depths in the z-axis (Figure S21). We also
considered 2D CNNs to detect microparticles in the x−y
plane by working directly with a 2D input, wherein the
intensities of the OCT scan were summed over the z-axis in
the given subvolume. However, this was not as accurate as the
3D CNN due to loss of information from the z-axis.
After confirming a high classification accuracy for identifying

microparticles within the 3D sample, we then performed an
end-to-end evaluation of the entire biosensing pipeline. It is
worth noting that we have thus far built a highly accurate
“classifier” to determine the presence/absence of micro-
particles in a chosen input subvolume using a 3D CNN. But
to apply it to “locate” microparticles in a given volume for
monitoring submicron size changes of the identified micro-
particle, we needed a strategy for generating as well as assessing
subvolumes of the full OCT scan. There are many ways to
divide the OCT scan into a grid of subvolumes. In general, a
microparticle located at the center of a subvolume was found
to be more easily identified with a 3D CNN compared to a
microparticle located at the boundary. In turn, the choice of
grid layout would affect the overall accuracy of the micro-
particle detection pipeline. We first divided the 1 mm × 1 mm
cross-sectional area into a 10 × 10 grid (white dotted grid lines
in Figure 5c) for the 3D CNN to classify. The z-dimension of
each subvolume in the grid was kept constant (at 91 pixels, as
described earlier), since it contains the entire A-scan of the
microparticle required for size estimation. This helped to
reduce the labeling effort in trying to find the depth of the
microparticle. It is worth noting that we can also use a more
flexible region proposal approach commonly used for
producing bounding boxes in object detection,48,49 but we
employ a fixed regular grid for simplicity in this pilot study. To
handle microparticles lying at the boundaries of grid cells, we
also use the 3D CNN to classify a 9 × 9 grid shifted by half the
size of a grid cell in the x- and y-dimensions and take the union
on the set of microparticles identified with the original set. By
taking the union of two sets of microparticles identified by
separate classification on two different grid layouts, we can
improve the detection of microparticles lying at the boundaries
in either of the grid layouts. Although this can potentially lead
to more false positives (non-microparticles), this problem was
circumvented by employing a stringent filter on which
microparticles were selected for further tracking based on
expected size changes. In particular, we deemed any detected
microparticle that changed in size by more than 10% in one
time step (i.e., 5 mins) to be unreliable and eliminated them
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from the list of microparticles to be tracked, since such a
response was found to be physically infeasible during the
microparticle characterization studies described earlier. Such
detected microparticles could be either false positives (a non-
microparticle like background scatter noise) or true positives
(actual microparticles) with a noisy A-scan such that we
cannot estimate their sizes reliably.
As depicted in Figure 5c for one of the selected data sets,

seven of the eight microparticles were successfully identified by
our 3D CNN (indicated as white and orange bounding boxes).
The evolution of microparticle size (estimated using the peak
fitting method as described in Supporting Note 2) over time
was plotted for all identified microparticles (Figure 5d). The
microparticles indicated by white bounding boxes displayed
the expected swelling and deswelling response to glucose as
described above (Figure 5d and Figure S22). Two of the
microparticles (indicated by orange bounding boxes in Figure
5c) were excluded since the change in size per time step was
physically improbable (Figure S23). We prefer tracking a set of
fewer but more stable microparticles because we only need to
reliably estimate the sizes of a handful of microparticles to
monitor the fluctuations in biochemical concentration.
This approach of identifying microparticles using 3D CNN

is highly flexible and can be adapted through training with
appropriate data to different types of microparticles in different
tissue environments to monitor diverse biochemical targets. It
is also fast and can be made to run in real-time on embedded
systems with AI chip accelerators for different portable medical
devices. If we obtain detailed labeling of voxels belonging/not
belonging to microparticles, then we can also use CNNs to
directly predict the size of microparticles. The main difficulty
in applying this approach is the collection of labeled training
data, which can be expensive and time-consuming. But it could
potentially be circumvented through the use of synthetic data
(e.g., microparticle data generated through a physical model
such as Fabry−Perot) and through the sharing of labeled data
in public repositories by different groups, as done in many
other domains of applications for deep learning.38,50

CONCLUSION
Overall, we have established a robust OCT-based biosensing
approach, using glucose-responsive microparticles as a proof of
concept. Since inception, OCT has been primarily used as a
tool for structural imaging, initially for ophthalmology and
recently for dermatology. By combining the distinctive
attributes of OCT imaging with biochemical-responsive
polymeric microparticles and machine learning, we report a
compelling demonstration of OCT as an effective biosensing
modality.
Our approach offers exceptional features for continuous

biochemical monitoring applications. First, the microparticle
biosensors are freely dispersible in any liquid medium, scaffold,
or even biological tissue. This provides the potential to
monitor biochemicals in their native biological environments,
without requiring complex wiring or tethering to the surface. In
turn, the microparticle biosensors can be potentially deployed
into the skin and thereafter imaged with OCT up to 1−2 mm
inward in a noncontact mode (Figure S24). Second, the ability
to simultaneously acquire spatial and temporal information
about the distributed biosensors allows for the response to be
mapped in 3D over time, thus capturing the biochemical
heterogeneity of a sample or tissue. Third, by decoupling the
biorecognition component (i.e., microparticle) from the signal

reporter (i.e., noninvasive and noncontact OCT imaging), our
modular design imparts the flexibility to independently tune
each sensing element. In turn, a versatile library of responsive
microparticles can be envisioned that exhibit physiochemical
changes based on the interaction of the microparticle-tethered
biorecognition element (e.g., DNA/RNA, antibodies, aptamers,
small molecules) with a target biochemical-of-interest.51−53

The combination of such a biosensor library with a reliable
means of sensing readout like OCT enables our methodology
to be tailored for a variety of prospective applications in
continuous in vivo biomonitoring. One feasible application of
our microparticles is as tissue-integrating sensors for general
sensing. There are emerging demonstrations of tissue-
integrating microsensors for real-time in vivo monitoring.
One such example is for oxygen sensing, in which
biocompatible hydrogels containing covalently bound sensing
molecules (metalloporphyrins) were injected into the subcuta-
neous tissue and then monitored with an optical reader
positioned over the injection site.54 Such reported commercial
microsensors are relatively large (about 10 times larger than
our microparticles), but were found to be compatible for long-
term tracking in human patients.55 Our microparticle
biosensors can be used in a similar manner, yet offer the
added benefits for potentially modifying the microparticle
composition to detect other biochemicals with the same
sensing mechanism as well as spatiotemporal optical tracking at
greater tissue depths with OCT. Another application of our
approach is for chronic wound care. An unmet need in chronic
wound care is a facile means to acquire a biochemical readout
of the healing progression, with minimal to no physical
perturbation of the wounded tissue after the initial
intervention.56 We envision our methodology to be suitable
for such an application, wherein biocompatible micron-scale
sensors that sense the local changes in the wound biochemistry
can be freely distributed within the wound, followed by remote
noncontact monitoring in 3D over time using OCT. Moreover,
recent efforts to miniaturize the OCT system from benchtop to
chip-scale36 further empower our approach, with broader
implications to improve future healthcare monitoring in the
clinic, at home, and on-the-go.

METHODS
Materials. All chemicals were of analytical grade and used without

further purification. Acrylamide (AM) (99.5%), polyethylene glycol
diacrylate (PEGDA) (MW: 575), paraffin oil, hexane (anhydrous,
95%), dextrose (D-(+)-glucose), agarose, dimethyl sulfoxide (DMSO)
(sterile-filtered, 99.7%), monodisperse polystyrene microparticles
(4.0, 6.0, 10.0, and 20.0 μm), Dulbecco’s modified Eagle’s medium
(containing high glucose, L-glutamine, sodium pyruvate, sodium
bicarbonate), fetal bovine serum, and penicillin−streptomycin were
purchased from Sigma-Aldrich. 2-Hydroxy-2-methylpropiophenone
(2-HMP) (96%) and Span80 were purchased from TCI America. 3-
(Acrylamido)phenylboronic acid (APBA) was purchased from Boron
Molecular. Sodium phosphate buffer (0.2 M, pH 8.5) was purchased
from Alfa Aesar. Clear silicone sealant was purchased from Loctite.
Porcine skin (nonsterile, 1.524 mm) was purchased from Stellen
Medical.

Equipment. A UV-spot curing probe (BlueWave QX4, 365 nm)
was purchased from Dymax. A hand-held optical power meter (1830-
R) was purchased from Newport. Syringe pumps (Legato 200 dual
syringe infuse only) were purchased from KD Scientific. Chambered
coverglass (Lak-Tek II, #1.5 borosilicate, 8 wells) was purchased from
Electron Microscopy Sciences. Hypodermic needles were purchased
from Becton Dickinson. A low-profile, rubber platform vortex mixer

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c00497
ACS Nano 2021, 15, 9764−9774

9771

http://pubs.acs.org/doi/suppl/10.1021/acsnano.1c00497/suppl_file/nn1c00497_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.1c00497/suppl_file/nn1c00497_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.1c00497/suppl_file/nn1c00497_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.1c00497/suppl_file/nn1c00497_si_001.pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c00497?rel=cite-as&ref=PDF&jav=VoR


was purchased from Thermo Scientific. The optical microscope (A1R
laser scanning confocal microscope) was purchased from Nikon.
Formulation of the Precursor Monomer Solution. The

precursor solution was prepared by first dissolving AM (62−72 mol
%) and PEGDA (3 mol %) in deionized water. The phenylboronic
acid derivative APBA (25−35 mol %) was then dissolved in DMSO
and added dropwise to the AM-PEGDA solution, followed by the
addition of the 2-HMP photoinitiator (5 wt %). The precursor
solution was then mixed and passed through a 0.45 μm syringe filter.
The total weight of AM, PEGDA, and APBA was adjusted with
respect to the volume to acquire ∼18% w/v gels.
Fabrication of Microparticles Using the Vortex Method. To

form microparticle emulsions using the vortex method, an oil mixture
consisting of paraffin oil and 1% Span80 surfactant was first prepared.
About 1 mL of this oil mixture was then transferred to a 11 mL
borosilicate glass vial, followed by the addition of 50 μL of the
precursor solution. The aqueous precursor solution was transferred
into the oil mixture with a pipettor, forming a single droplet immersed
in oil at the bottom of the vial. The sample was then vortexed (1500−
2500 rpm) for 40 s to allow for emulsion formation, followed by
irradiation with UV light (365 nm) for 3 min. The microparticles
were then transferred to Eppendorf tubes to purify by sequential
washing (hexane, followed by phosphate buffer solution) and isolation
with centrifugation (1000g, 2 min).
Fabrication of Microparticles Using Microfluidics. A three-

inlet, one-outlet geometry microfluidic device was used to generate
monodisperse hydrogel emulsions via the flow-focusing technique.
The middle inlet was a 20 μm in width by 20 μm in depth orifice
sandwiched by two side inlets that were 100 μm in width and 20 μm
in depth. During droplet generation, the precursor solution was
infused through the middle inlet at flow rates between 0.2 and 1 μL/
min. Simultaneously, sheath fluid (consisting of paraffin oil and 5 wt
% Span80 surfactant) was introduced through the two side inlets at
flow rates between 20 and 40 μL/min to hydrodynamically pinch the
precursor fluid at the orifice, dispersing the uniform droplets at
desired sizes. Droplets with sizes ranging from 20 to 60 μm were
generated by adjusting the flow rates in described ranges. The
droplets were then transported via the device outlet (500 μm in
length × 250 μm in width × 20 μm in depth) and connected tubing
(30-gauge) to a transparent Eppendorf tube collector. For photo-
polymerization, a UV-spot curing probe was positioned 1 cm away
from the outlet tubing exit, and a 5 mm diameter circular UV spot
with an exposure intensity of 5 W/cm2 was continuously delivered to
the exiting droplets to form spherical hydrogel microparticles. The
microparticles were then purified by sequential washing (hexane,
followed by phosphate buffer solution) and isolated with
centrifugation (1000g, 2 min).
Characterization of Microparticle Response to Glucose.

Glucose solutions of varying concentrations were generated in PBS
(pH 8.5) by serial dilution, starting with a 100 mM stock. To assess
the microparticle response to glucose under static conditions, about
10 μL of the microparticle solution was transferred to the bottom of
the well in chambered coverglass (Lak-Tek II, 8-well). After waiting
about 1 min for the microparticles to settle, the coverglass was placed
on a holder in the optical microscope. After transferring 200 μL of the
desired glucose solution into the well, images were acquired every 30
s. To assess the microparticle response to glucose under constant flow
conditions, a custom single-inlet and single-outlet flow cell was made.
Briefly, the flow cell consisted of a PDMS slab with a through-hole
recess measuring 25 mm in length, 5 mm in width, and 5 mm in
depth. The PDMS slab was irreversibly bonded to a glass slide
forming an open flow cell. Prior to glucose solution infusion, an equal
part mixture of 1% molten agarose (maintained at 75 °C) and the
microparticle suspension solution was mixed for 5 s, and the resultant
0.5% mixture solution was then dispensed as a thin layer in the PDMS
flow cell. The flow cell was immediately placed at 4 °C for 3 min in
order to harden the agarose gel matrix and then filled with buffer
solution. A clear silicone sealant was subsequently applied to the open
edges of the flow cell, allowing the placement of a cover glass to form

an airtight closure for continuous flow from inlet to outlet. All
experiments were conducted at room temperature.

OCT Imaging Setup. OCT images of the flow cell were acquired
over a lateral area of 1 mm × 1 mm using a custom fiber-based swept-
source OCT system incorporating a commercial swept-source laser
(Axsun; 1310 nm center wavelength, 130 nm sweep bandwidth, 100
kHz repetition rate). A galvo scanner was used for beam scanning
along with a telecentric lens that provided 10 μm lateral resolution at
the focal plane. The lateral dimension was raster scanned, with the 1
mm x-direction significantly spatially oversampled for a total of 1500
A-scans per B-scan. The y-direction was scanned at 10 μm increments
for a total of 100 pixels over 1 mm. A full scan took approximately 1.6
s and was repeated every 2 to 5 min. More details for the OCT setup
are provided in Supporting Note 1.

Deep Learning Architecture. We employed a 3D CNN
architecture as shown in Figure S19. It consists of multiple blocks
of convolution and maxpooling layers, followed by linear layers that
map to the classification output. It also follows the design principle of
VGGnet47 that uses small filters and double the number of channels
whenever there is a downsampling. The output of a block xk+1 can be
computed from the output of the previous block xk as

=+ x f c dx Maxpool(ReLU(Conv( , , )), )k k k kk 1

where Conv(x, f, c) is the convolution operator with a filter size f and
c output channels, Maxpool(x, d) is max-pooling operator with d
downsampling factors in different dimensions, and ReLU is the
rectified linear unit. We use f k = (3,3,3), (3,3,3), (1,3,3), (1,3,3), ck =
8, 16, 32, 64, and dk = (2,2,2), (2,2,2), (1,2,2), (1,2,2). There are two
linear layers that reduce the dimension to 64 with ReLU and then 2
with softmax for classification (presence/absence of microparticle).
We use the cross-entropy loss to train the network for classification.
The 3D CNN is trained 40 epochs (40 passes through the training
data) by stochastic gradient descent using a step size of 0.1 and a
batch size of 128. The neural network was implemented using
Tensorflow.57 It required about 4 h to finish the training using one
NVIDIA P100 GPU.
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